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Gradient-Based Manipulation of
Nonparametric Entropy Estimates

Nicol N. Schraudolph

Abstract— This paper derives a family of differential learning
rules that optimize the Shannon entropy at the output of an adap-
tive system via kernel density estimation. In contrast to paramet-
ric formulations of entropy, this nonparametric approach assumes
no particular functional form of the output density. We address
problems associated with quantized data and finite sample size,
and implement efficient maximum likelihood techniques for op-
timizing the regularizer. We also develop a normalized entropy
estimate that is invariant with respect to affine transformations,
facilitating optimization of the shape, rather than the scale, of the
output density. Kernel density estimates are smooth and differ-
entiable; this makes the derived entropy estimates amenable to
manipulation by gradient descent. The resulting weight updates
are surprisingly simple and efficient learning rules that operate
on pairs of input samples. They can be tuned for data-limited or
memory-limited situations, or modified to give a fully online im-
plementation.

Index Terms— affine-invariant entropy, entropy manipulation,
expectation-maximization, kernel density, maximum likelihood
kernel, overrelaxation, Parzen windows, step size adaptation.

I. INTRODUCTION

Since learning is by definition an acquisition of informa-
tion, it is not surprising that information-theoretic objectives
play an important role in machine learning [24]. Although they
have been proposed for supervised learning problems as well
[14, 24], their particular strength lies in unsupervised learning,
due to their ability to quantify information without reference to
a particular desired output or behavior. Consider the mutual in-
formation between two random variables, defined as the sum of
their individual entropies minus their joint entropy:

I(A,B) = H(A) + H(B) − H(A,B) . (1)

In contrast to, e.g., correlation, which measures the degree to
which a linear relationship between two variables is present,
mutual information provides a measure of relatedness between
A and B which does not presuppose any particular form of re-
lationship. This is obviously very useful when the nature of the
relationship between A and B is a priori unknown.

1) Three Approaches: Researchers have used mutual infor-
mation as an objective for machine learning in (at least) three
different ways. Linsker [20] proposed maximizing the mutual
information between input and output of an adaptive system. In
this context, mutual information is usefully reformulated as

I(A,B) = H(A) − H(A|B) , (2)
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where H(A|B) = H(A,B)−H(B) is the conditional entropy
of A given B. The mutual information between input and out-
put of a system can thus be interpreted as an information gain
[33] at the output, i.e., a drop in the entropy of the output den-
sity A when a specific input drawn from B is applied. Its max-
imization is known as the principle of maximum information
preservation or “Infomax” [20], motivated by a desire to pre-
serve the essence of a signal as it moves through a succession
of processing stages.

A second approach is to minimize the mutual information
between the outputs of an adaptive system in order to obtain
a non-redundant code. This strategy has been variously redis-
covered and named: redundancy reduction [2, 3], factorial code
learning [4], predictability minimization [27, 28, 32], and inde-
pendent component analysis [7, 10]; it can be used to perform
blind separation and deconvolution of signals.

A third way to use mutual information in machine learning
is to maximize it between the output of an adaptive system and
some reference data which does not belong to its inputs (as in
Infomax), but still relates to them in some (perhaps unknown)
way. For instance, the reference may be a class label [37], or
data from a different modality but describing the same object
or event as the input. By maximizing mutual information, the
adaptive system leverages this relationship to align its output
with the reference. This can be a very powerful technique, and
has been used extensively in computer vision [41–43]. A vari-
ation on this theme is to have two separate adaptive systems,
receiving separate inputs, maximize the mutual information be-
tween their outputs [5].

2) Visual Tracking: Let us illustrate the above with an ex-
ample. Say the objective is to track a user’s hand in a video
sequence, as shown in Fig. 1. To achieve this, an articulated
hand model, with up to 30 degrees of freedom specifying po-
sition, orientation, and joint angles, must be aligned with the
hand’s image in each video frame. Conventionally, this could
be done by rendering the hand model, then using the differ-
ence between the predicted and actual image of the hand as an
error signal. This has the major disadvantage, however, that
rendering requires detailed information about the hand’s color,
texture, lighting, etc., which is available only in the most con-
trolled lab settings.

Instead, we can exploit the fact that mutual information does
not presuppose a particular form of relationship: pick a random
sample of points on the surface of the hand model, and max-
imize the mutual information between the orientation of their
surface normals and the intensity of the corresponding pixel in
the video image. As long as there is any consistent relationship
between surface orientation and brightness (i.e., the lighting is
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(a) (b)

Fig. 1. Tracking an articulated three-dimensional hand model in video frames. The (b) correctly aligned model has higher mutual information between the
orientation of its surface normals and the intensity of the corresponding image pixels than the (a) misaligned one.

directional), mutual information will align the model with the
image so as to uncover that relationship. A similar technique
can also be used to align two images from different modalities,
for example in medical image registration.

3) Simplifications: While information theory thus provides
a very general, productive framework for deriving objectives
for machine learning, its full generality and power is rarely em-
ployed, due to a number of difficulties. First, mutual informa-
tion and the entropies from which it is composed are defined as
functions of a probability density. In machine learning the in-
put density is typically not available, and must first be estimated
from data. This complication has caused many researchers to
simplify matters by making strong distributional assumptions
(such as gaussianity) about their data [20], or to restrict their
adaptive system to only produce certain output distributions
(e.g., binary stochastic neurons [5]). Such parametrizations of
the density sacrifice much of the generality of the information-
theoretic approach, sometimes going so far as to effectively re-
duce entropy to a glorified measure of variance.

A second problem lies in the fact that for continuous distribu-
tions, entropy is not scale-invariant. A system capable of scal-
ing its outputs can therefore maximize or minimize its output
entropy in a trivial way. This is often countered by restrict-
ing the output range of the adaptive system, e.g., with a sig-
moid output nonlinearity [5, 7]. Finally, quite often only the
joint entropy is optimized, instead of the full mutual informa-
tion [7, 39]. This can lead to various problems; for instance,
it is the reason why the independent component analysis algo-
rithm of Bell and Sejnowski [7] could originally only handle
supergaussian inputs.

In this paper, we try to avoid these kinds of simplifications in
order to derive a completely general framework for estimating
and manipulating entropies at the output of an adaptive system.
In Section II we construct a differentiable estimate of the data
density in nonparametric fashion, making no distributional as-
sumptions other than smoothness. We pay particular attention
to the optimization of the shape of the kernels used in this pro-
cess. In Section III we formulate Shannon entropy in terms
of this density estimate, and derive its gradient for purposes
of entropy manipulation. We also provide an affine-invariant

entropy that can safely be extremized by systems capable of
scaling their outputs, and discuss a number of implementation
issues. Section IV then summarizes and concludes our paper.

II. NONPARAMETRIC DENSITY ESTIMATION

Since entropy is defined in terms of probability density, a
nonparametric estimate of the density of a given data sample
must be obtained first. To facilitate gradient-based entropy ma-
nipulation the density estimate should be smooth and differen-
tiable; this excludes from consideration techniques that produce
piecewise constant density estimates, such as histograms and
sample spacings [6]. For large data samples, semi-parametric
density estimation methods such as expectation-maximization
(EM) [8, 11] or the self-organizing maps of van Hulle [39, 40]
can be useful; for our purposes, however, kernel density esti-
mation provides a simpler, fully nonparametric alternative.

A. Kernel Density Estimation

Parzen [23] window or kernel density estimation assumes
that the probability density is a smoothed version of the empir-
ical sample [12, chapter 4.3]. Its estimate p̂(y) of the density
p(y) of a random variable Y is simply the average of radial
kernel functions K centered on the points in a sample T of in-
stances of Y :

p̂(y) =
1
|T |

∑
yj∈T

K(y − yj) . (3)

This kernel density is an unbiased estimate for the true density
of Y corrupted by noise with density equal to the kernel (or
window) function K. We will use the multivariate Gaussian
kernel

K(y) = N(0,Σ) =
exp(− 1

2 y T Σ−1 y)

(2π)
n
2 |Σ| 12

(4)

with dimensionality n and covariance matrix Σ. Other choices
for K are possible but will not be pursued here, though we will
augment (4) for quantized data.
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Fig. 2. Kernel density estimate p̂(y) for 100 points (shown as vertical bars)
randomly sampled from a uniform distribution over the interval [0.3,0.7]. De-
pending on the kernel width σ, p̂(y) may be underregularized (dotted line),
overregularized (dashed line), or “just right” (solid line).

It can be shown that under the right conditions p̂(y) will con-
verge to the true density p(y) as |T | → ∞. For our Gaussian
kernels, these conditions can be met by letting the covariance
Σ of the kernel shrink to zero slowly enough as the sample size
approaches infinity. The covariance is an important regulariza-
tion parameter in any event, as it controls the smoothness of the
kernel density estimate. Fig. 2 illustrates this in one dimension:
When the kernel width σ =

√
Σ is too small (dotted line), p̂(y)

overly depends on the particular sample T from which it was
computed, and the density estimate is underregularized. Con-
versely, when σ is too large (dashed line), p̂(y) is overregular-
ized — it becomes insensitive to T , taking on the shape of the
kernel function regardless of the true density p(y). Between
these extremes, the kernel that best regularizes the density es-
timate (solid line) can be found via the maximum likelihood
approach.

An empirical estimate of the maximum likelihood kernel is
the kernel that makes a second sample S drawn independently
from p(y) most likely under the estimated density p̂(y) com-
puted from the first sample, T . For numerical reasons it is
preferable to maximize the empirical log-likelihood

L̂ = ln
∏

yi∈S

p̂(yi) =
∑
yi∈S

ln p̂(yi) (5)

=
∑
yi∈S

ln
∑

yj∈T

K(yi − yj) − |S| ln |T | .

B. Quantization and Sampling Issues
The estimated kernel log-likelihood (5) assumes two inde-

pendent samples from a continuous density. In practice, empir-
ical data does not conform to these conditions: we are likely to
be given a finite set of quantized data points to work with. Both
quantization and finite sample size can severely distort L̂; we
now introduce ways to correct for these two problems.

Consider the plot of estimated log-likelihood vs. kernel width
shown in Fig. 3. The uniform density we are sampling from is

L̂
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Fig. 3. Estimated log-likelihood L̂ vs. kernel width σ for 1 000 points drawn
from a uniform scalar density (true likelihood: L = 0), quantized to 3 decimal
places (b = 0.001). Solid line is the correct estimate, using (5) with Ti =
S \{yi} and kernel (6) with κ = 1/6. Dashed line shows the distortion caused
when Ti = S, failing to omit the diagonal terms from the double summation
in (5). Dotted line results from using the simpler kernel (4) which fails to take
the quantization of the data into account.

given by p(y) = const. = 1, and so the true log-likelihood is
zero, yet its estimate computed according to (5), using the ker-
nel (4), monotonically increases for ever smaller kernel widths
(dotted line). The culprit is quantization: the sample points
were given with three significant digits, that is, quantized into
bins of width b = 0.001. When several samples fall into the
same bin, they end up being considered exactly the same. In a
real-valued space, such a coincidence would be nothing short
of miraculous, and in an attempt to explain this miracle, max-
imum likelihood infers that the density must be a collection of
delta functions centered on the sample points. This is of course
unsatisfactory.

We can correct this problem by explicitly adding the quan-
tization noise back into our quantized sample. That is, for a
quantization bin width of b, we replace (4) with

K(y) =
exp[− 1

2 (y T Σ−1 y + κ bT Σ−1b)]√
(2π)n |Σ|

(6)

where κ must be chosen to appropriately reflect the quantiza-
tion: to evaluate the kernel density at an arbitrary (i.e., non-
quantized) point y, we assume that each data point yj is uni-
formly distributed over its bin; the resulting variance is ac-
counted for by setting κ = 1/12. This value must be doubled to
κ = 1/6, however, if the point y where the density is evaluated
is likewise a quantized data point, as is the case for the log-
likelihood (5) resp. empirical entropies (24), (26) considered
here.1

Fig. 3 shows that with the addition of quantization noise vari-
ance (dashed line), the log-likelihood estimate does acquire an
optimum. However, it is located at a kernel width less than b, so
that there is no significant smoothing of the quantized density.
Furthermore, the empirical log-likelihood at the optimum is far

1The value of κ = 1/4 given in [29] is incorrect.
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from the true value L = 0. This indicates that another problem
remains to be addressed, namely that of finite sample size. The
log-likelihood estimate (5) assumes that S and T are indepen-
dently drawn samples from the same density. In practice we
may be given a single, large sample from which we subsample
S and T . However, if this is done with replacement, there is
a non-zero probability of having the same data point in both S
and T . This leads to a problem similar to that of quantization,
in that the coincidence of points biases the maximum likelihood
estimate towards small kernel widths. The dashed line in Fig. 3
shows how the diagonal terms in S × T distort the estimate
when both samples are in fact identical (S = T ).

This problem can be solved by prepartitioning the data set
into two subsets, from which S and T are subsampled, respec-
tively (“splitting data estimate” [6]). In a data-limited situation,
however, we may not be able to create two sufficiently large sets
of samples. In that case we can make efficient use of all avail-
able data while still ensuring S∩T =∅ (i.e., no sample overlap)
through a technique borrowed from leave-one-out crossvalida-
tion: for each yi ∈ S in the outer sum of (5), let the inner sum
range over Ti = S \{yi} (“cross-validation estimate” [6]). The
solid line in Fig. 3 shows the estimate obtained with this tech-
nique; at the optimum the estimated log-likelihood comes close
to the true value of zero.

C. Gradient Ascent in Likelihood

Given that the kernel density estimate (3) is differentiable, an
obvious way to optimize the kernel shape is by gradient ascent.
Since the derivatives of L̂ with respect to the elements of the
full covariance matrix Σ are rather complicated, we restrict our
discussion to diagonal covariance matrices, parametrized by a
vector σ of kernel widths: Σ = diag(σ2). The derivative of
the kernel (6) with respect to the kth kernel width parameter
[σ]k is then

∂

∂[σ]k
K(y) =

(
[y] 2k + κ [b] 2k

[σ] 3k
− 1

[σ]k

)
K(y) , (7)

and that of the log-likelihood L̂,

∂L̂

∂[σ]k
=

∑
yi∈S

∑
yj∈T

(
[yi−yj ] 2k + κ [b] 2k

[σ] 3k
− 1

[σ]k

)
πij , (8)

where πij =
K(yi − yj)
|T | p̂(yi)

=
K(yi − yj)∑

yk∈T

K(yi − yk) .
(9)

For κ = 0, (7) and (8) simplify to the equations given in [29,
41, 42]. πij is a proximity factor that weighs how close yj is
to yi relative to all other points in T . For Gaussian kernels,
it is equivalent to the softmax nonlinearity [9] operating on the
squared Mahalonobis distance [12]

D(u) = uT Σ−1u . (10)

Thus if yj is significantly closer (in the Mahalonobis metric) to
yi than any other element of T , the proximity factor πij will
approach one; conversely it will tend to zero if there is some
other point in the sample that lies closer.
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Fig. 4. The correct log-likelihood estimate L̂ from Fig. 3, plotted against
kernel width σ on a linear scale. This function shape is not amenable to maxi-
mization by ordinary gradient descent.

Using the above machinery, simple gradient ascent in the log-
likelihood with step size η would update the kernel widths σ via

σ(t+1) = σ(t) + η g(t) , g(t) =
∂L̂

∂σ

∣∣∣∣∣ σ(t) .
(11)

However, this simplistic approach does not work well at all.
Fig. 4 shows the same log-likelihood as Fig. 3, but plotted
against kernel width on a linear scale. It is evident that the
maximum of L̂ lies near the semipole at σ = 0, where the gra-
dient goes to infinity. (In general, the likelihood diverges at
all degeneracies of the covariance matrix.) Step sizes η small
enough to safely negotiate the neighborhood of the maximum
will exhibit very slow convergence on the long, linear slope for
larger σ (see Section II-F). Conversely, step sizes large enough
to traverse the linear slope reasonably fast will overshoot the
maximum and on the other side encounter large gradients, pro-
ducing very large or even negative σ, with disastrous results.

D. Exponentiated Gradient and Step Size Adaptation

Scaling parameters such as σ are best adapted in log-space,
where their gradients are much better behaved (see Fig. 3):

lnσ(t+1) = lnσ(t) + η
∂L̂

∂ lnσ .
(12)

Re-exponentiating (12) gives a multiplicative “exponentiated
gradient” [19] update rule capable of adjusting σ over many
orders of magnitude while keeping it strictly positive:

σ(t+1) = σ(t) · e η g(t)·σ(t) , (13)

where · denotes Hadamard (i.e., component-wise) multiplica-
tion. Note that the σ(t) in the exponent cancels against the
denominator of the gradient (8). The exponentiated gradient
update (13) can be further improved in terms of numerical sta-
bility and computational efficiency by re-linearizing the expo-
nentiation via eu ≈ max( 1

2 , 1 + u) [31], giving

σ(t+1) = σ(t) ·max[ 1
2
, 1 + η g(t) · σ(t)] . (14)

To further accelerate convergence we give each kernel width
[σ]k its individual, time-varying step size [η]k, adapted via the
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following simple mechanism [34, 36]:

[η]k(t+1) =

{
[η]k(t) · % if [g]k(t) [g]k(t−1) > 0 ,

[η]k(t)/% otherwise ,
(15)

where % > 1. This increases the step size along directions
where the sign of the gradient remains the same, and decreases
it where the sign changes. More sophisticated step size adapta-
tion mechanisms have been developed [1, 30, 31], but we find
(15) with % = 1.5 sufficient for our purposes here (see Sec-
tion II-F).

E. Expectation-Maximization

While the accelerated gradient ascent in log-likelihood de-
scribed above is very fast, it may still diverge occasionally,
and optimizes only a diagonal covariance matrix. We can im-
prove upon that by observing that the kernel density estimate is
in form of a mixture of Gaussians, with |T | equally weighted
mixture components, each centered on a point yj ∈ T . This
means that a simplified form of the highly efficient expectation-
maximization (EM) algorithm [8, 11] can be used to find the full
covariance matrix Σ that maximizes L̂.

EM proceeds by alternating between two steps: in the E-step
we calculate for a given Σ the expectation that a particular mix-
ture component j is responsible for data point yi, given by the
proximity factor πij (9). In the M-step we calculate the ker-
nel covariance Σ that maximizes L̂ for given πij . For Gaussian
kernels, this is simply the covariance of the proximity-weighted
data:

Σ =
1
|S|

∑
yi∈S

∑
yj∈T

πij (yi − yj)(yi − yj)T . (16)

In contrast to EM proper, we do not update kernel centers or
weights here, since these are fixed by our nonparametric ap-
proach to density estimation.

Since the calculation of Σ depends on the proximity factors,
which in turn depend on the kernel shape, which is given by
Σ, the entire procedure must be iterated by alternating between
E-step (9) and M-step (16). Convergence to the maximum of
L̂ is typically much faster than for gradient ascent; we hasten it
further by employing after each M-step (16) the overrelaxation

Σ(t) := Σ(t)Σ(t−1)−1Σ(t) , (17)

where t indexes the EM iteration. This acceleration technique
is safe in that it still guarantees convergence.

Finally, we need some initial values for the EM iterations to
refine. A reasonable choice is to initialize Σ(0) to the covari-
ance Σ∗ of the data sample, which can be calculated as

Σ∗ =
1

2|S||T |
∑
yi∈S

∑
yj∈T

(yi − yj)(yi − yj)T . (18)

This corresponds to invoking the M-step (16) with uniform
proximity factors of (∀i, j) πij = (2|T |)−1.
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Fig. 5. Experimental comparison of kernel shape optimization methods. Dot-
ted line: ordinary gradient ascent (11); dashed line: re-linearized exponentiated
gradient (14); solid line: (14) with step size adaptation (15). Open circles: EM;
solid disks: EM with overrelaxation (17).

F. Experimental Comparison

To illustrate the differences between the kernel shape opti-
mization methods we have discussed, we compare their per-
formance experimentally, using data from the hand tracking
application shown in Fig. 1. Specifically, we optimized the
kernel shape for mini-batches of 30 sample points from the
six-dimensional space spanned by the orientation of the hand
model surface normal (x, y, and z components) and pixel in-
tensity at the corresponding location of the video image (R,
G, and B components). For the gradient methods, the kernel
widths were initialized to the standard deviations of the data:
σ =

√
diag(Σ∗); the (initial) step sizes were roughly opti-

mized by hand as follows: starting from η = 1, we repeat-
edly reduced η by a factor of 10, until stable convergence was
achieved.

The results are shown in Fig. 5, which plots the determinant
of the covariance matrix against the number of iterations in a
typical kernel shape optimization. It is obvious that ordinary
gradient ascent (dotted line) is intolerably slow to converge, due
to the very small step size (η = 10−5) that had to be employed
to achieve stability; this validates our discussion in Section II-C
above. Our re-linearized exponentiated gradient (dashed line),
by contrast, converges within about 20 iterations. Step size
adaptation (solid line) cuts this down to less than 10 iterations,
at the cost of introducing some of the oscillatory (“twitchy”) be-
havior characteristic of the simple sign-based technique we em-
ployed. More recent, sophisticated step size adaptation meth-
ods [1, 30, 31] could be used to ameliorate this problem.

The expectation-maximization (EM) algorithm takes about
25 iterations to converge, a very good result, considering that
it optimizes a full covariance matrix (here: 21 degrees of free-
dom) instead of just the diagonal (6 d.o.f.), as the gradient meth-
ods do. Even better, our overrelaxation trick (17) brings this
down to 15 iterations while still guaranteeing convergence. We
conclude that EM with overrelaxation should be used whenever
computationally feasible. In higher-dimensional spaces, where
the cost of operating on full covariance matrices may be pro-
hibitive, our re-linearized exponentiated gradient with step size
adaptation offers an efficient diagonalized alternative.
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G. Heteroscedastic Kernel Density Estimate

Up to now he have tacitly assumed homoscedasticity, i.e.,
that all kernels have the same shape. Many probability densi-
ties, in particular those with discontinuities, are better approx-
imated by allowing each kernel its own shape, which can be
fitted individually to the local data. Our approach is easily gen-
eralized to the heteroscedastic kernel density estimate

p̂(y) =
1
|T |

∑
yj∈T

Kj(y − yj) , (19)

where each kernel Kj has its own covariance parameters Σj ,
resp. σj . The proximity factors must now be redefined as

πij =
Kj(yi − yj)
|T | p̂(yi)

=
Kj(yi − yj)∑

yk∈T

Kk(yi − yk) .
(20)

For gradient ascent, each sample yj ∈ T is also given its own
vector ηj of individually adapted step sizes, and the overall gra-
dient (8) of the log-likelihood is replaced by the sample gradient

[gj ]k =
∑
yi∈S

(
[yi−yj ] 2k + κ [b] 2k

[σj ] 3k
− 1

[σj ]k

)
πij . (21)

Similarly, for heteroscedastic expectation-maximization the E-
step uses (20) instead of (9), while the M-step (16) becomes2

(∀yj ∈ T ) Σj =

∑
yi∈T πij (yi − yj)(yi − yj)T∑

yi∈T,i 6=j πij
(22)

III. OPTIMIZATION OF EMPIRICAL ENTROPY

Now that we have developed reliable and efficient techniques
for nonparametric density estimation with optimal kernel shape,
we shall use them to calculate and optimize the entropy pro-
duced from given empirical data by a parametrized differen-
tiable map, such as a feedforward neural network. For com-
plete generality, we will present equations for the heteroscedas-
tic kernel density estimate (19); the homoscedastic versions are
trivially obtained by dropping the sample index j from the rel-
evant entities (K, D, and Σ).

A. Nonparametric Entropy Estimate

In previous work [29, 41, 42] we approximated the entropy
of a random variable Y empirically, based on a sample S of
instances of Y :

H(Y ) = −
∫

p(y) ln p(y) dy

≈ − 1
|S|

∑
yi∈S

ln p(yi) , (23)

where p(y) is the probability density of Y . In a machine learn-
ing setting, p(y) is normally not explicitly available — in gen-
eral, we are given only empirical data, i.e., a supply of instances
of Y . However, we can infer an estimated kernel density p̂(y)

2An incorrect equation was given here in the original IEEE TNN publication.

from these samples via (3), and use that to obtain a nonpara-
metric estimate of the empirical entropy of Y :

Ĥ(Y ) = − 1
|S|

∑
yi∈S

ln p̂(yi) (24)

= − 1
|S|

∑
yi∈S

ln
∑

yj∈T

Kj(yi − yj) + ln |T | .

Note the close similarity to the empirical likelihood (5); all the
points we have made above regarding the adverse effects of
quantization and finite sample size, and how to overcome them,
equally apply to the estimation and optimization of Ĥ here.

B. Gradient of Estimated Entropy
Consider the situation where Y is produced by a

parametrized mapping Nw from another multivariate random
variable X , i.e., the kth instance of Y is yk = Nw(xk). The
adaptive mapping Nw might for example be a feedforward neu-
ral network with weights w. Our goal is to manipulate the esti-
mated entropy of Y by adjusting the parameters w. The gradi-
ent of Ĥ(Y ) with respect to these weights is

∂

∂w
Ĥ(Nw(X)) =

= − 1
|S|

∑
xi∈S

∂

∂w
ln

∑
xj∈T

Kj(Nw(xi)−Nw(xj))

= − 1
|S|

∑
xi∈S

∑
xj∈T

∂
∂w Kj(yi − yj)∑

xk∈T Kk(yi − yk)
(25)

=
1

2 |S|
∑
xi∈S

∑
xj∈T

πij
∂

∂w
Dj(yi − yj)

=
1
|S|

∑
xi∈S

∑
xj∈T

πij

(
∂yi

∂w
− ∂yj

∂w

)
Σ−1

j (yi − yj)

where πij is the proximity factor from (9), and Dj the squared
Mahalonobis distance (10) for the covariance Σj .

Provided that Nw is differentiable with respect to its param-
eters, we can thus lower (raise) the entropy Ĥ(Y ) by gradi-
ent descent (ascent) in w as prescribed by (25). Note that the
update rule is differential, i.e., it always operates on the dif-
ference between two sample points. It minimizes (maximizes)
entropy by reducing (increasing) the Mahalonobis distance be-
tween neighboring points, where neighborhoods are defined in
a soft, probabilistic manner by the proximity factors (9).

C. Affine-Invariant Entropy Estimate and Gradient
As described above, the optimization of entropy in the out-

put of an adaptive mapping suffers from a severe drawback:
entropy is not invariant under linear transformations of the out-
put, but varies with the log-determinant of its covariance [7], as
given by Σ∗ in (18). The easiest way for an adaptive system to
increase (decrease) its output entropy is therefore to modify its
output covariance by a suitable linear transformation.

Such linear rescaling is often undesirable, and in any event
could be achieved by much simpler (e.g., Hebbian resp. anti-
Hebbian) means. Here we want to focus on the nonlinear prob-
lem of optimizing the shape, rather than the scale, of the output
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density. Parra [22] achieves this by constraining the adaptive
system to implement only symplectic (i.e., volume-preserving)
maps. This technique, however, complicates the architecture of
the system, and is limited in scope: even where scaling per se
must not be rewarded, an adaptive system may still be required
scale the data, e.g., to match given targets. In such cases the
symplectic map approach cannot be used.

Instead of constraining the architecture, we constrain the ob-
jective function to be invariant with respect to affine transfor-
mations. Such an affine-invariant entropy measure can be con-
structed by means of subtracting out the dependence of entropy
on scale:

H̃(Y ) = Ĥ(Y ) − 1
2

ln |Σ∗| . (26)

The gradient of the correction term with respect to the parame-
ters w can be derived as follows:

∂ ln |Σ∗|
∂Σ∗

=
(adjΣ∗)T

|Σ∗|
= Σ−T

∗ , (27)

as shown in [7]. From Equation (18) the gradient of Σ∗ with
respect to a single parameter w is found to be

∂Σ∗

∂w
=

1
2|S||T |

∑
yi∈S

∑
yj∈T

[
uij(yi−yj)T + (yi−yj) uT

ij

]
,

where uij ≡
∂yi

∂w
− ∂yj

∂w
. (28)

Putting the two together gives

∂

∂w
ln |Σ∗| = trace

(
∂ ln |Σ∗|

∂Σ∗

∂Σ∗

∂w

)
= (29)

=
1

|S||T |
∑
xi∈S

∑
xj∈T

uT
ij Σ−1

∗ (yi − yj) ,

which can be extended to the entire vector w of parameters and
combined with (25) to finally yield

∂

∂w
H̃(Nw(X)) =

=
∂

∂w
Ĥ(Nw(X)) − 1

2
∂ ln |Σ∗|

∂w
(30)

=
1
|S|

∑
xi∈S

∑
xj∈T

(
∂yi

∂w
− ∂yj

∂w

)
Mij(yi − yj) ,

where Mij ≡ πijΣ−1
j − 1

2|T |
Σ−1
∗ .

Comparing this with (25) we see that an affine-invariant en-
tropy estimate H̃ can be optimized by gradient methods at
the small additional cost of including the subtractive correction
term Σ−1

∗ /(2|T |).
We illustrate the difference between optimizing Ĥ and H̃ on

3 seconds of speech data (male voice sampled at 4kHz). Fig. 6
(dotted) shows the typical Laplacian distribution of our speech
signal, evident in the linear tails on the log-scale plot. We take
this signal through an adaptive gain and hyperbolic tangent non-
linearity, then maximize the output entropy with respect to the
gain w by gradient ascent (on mini-batches of 100 samples).

Maximizing the empirical entropy Ĥ via (25) produces a gain
of w ≈ 4.5; Fig. 6 (solid) shows that at this gain, the output
density is as uniform as possible, and thus has maximal entropy
given the fixed range of the tanh function. Maximizing the
affine-invariant entropy H̃ via (30), by contrast, gives a gain of
w ≈ 2.1, at which the output has maximal entropy for a given
variance, i.e., is as Gaussian as possible. This can be seen in
the near-quadratic tails on the log-scale plot in Fig. 6 (dashed),
which are characteristic of a Gaussian. Thus even in a range-
limited adaptive system, the two types of entropy measure can
produce quite different behavior.

D. Update Strategies

A straightforward stochastic approximation gradient algo-
rithm to manipulate Ĥ resp. H̃ can be implemented by iterating
over the following three steps:

1) Pick a reference point xi ∈ S from the data and calculate
yi = Nw(xi).

2) Loop through a set of data points xj ∈ Ti and accumulate
the sums of various relevant terms.

3) Use the accumulated sums to update w in proportion to
(25) resp. (30), and Σ via either EM with overrelaxation
(17), or re-linearized exponentiated gradient (14) with
step size adaptation (15).

Note that we are interleaving kernel shape optimization steps
with entropy manipulation weight updates. This computational
shortcut is permissible since the kernel shape only needs to
track gradual weight changes, not each particular data sample;
it is thus neither necessary nor desirable to iterate the kernel
shape optimization to convergence prior to each weight update.

For the estimation and manipulation of Shannon entropy, by
contrast, it is necessary to accumulate statistics over a batch Ti

of sample points before each update of the weights w and ker-
nel shape Σ. This is because the updates depend on the ratio of
accumulated sums, for which in general there is no satisfactory
stochastic approximation. It is possible though to employ rela-
tively small “mini-batches” here to achieve a near-online weight
update (see below). In Section III-E we will discuss alternative
objectives that are amenable to a true online implementation.

An important practical issue is how the sets S and Ti of sam-
ples are generated. We have already mentioned that there must
not be any overlap between them — that is, the reference point
xi must not be contained in Ti. This still leaves many possi-
ble ways of sampling from a supply of data; which one is most
effective will depend on the particular application.

1) Data-limited: Consider the case where we only have ac-
cess to a relatively small, predetermined set of data points. To
make the best use of this limited supply, all pairs of samples
should enter into each computation of the entropy and likeli-
hood gradients. This can be achieved by a technique akin to
leave-one-out cross-validation: use all available data as set S,
and set Ti = S \{xi}, i.e., omit only the reference point from
the inner summation. Note that in order to implement this data-
limited approach efficiently, we must be able to hold all samples
in memory at the same time.

2) Memory-limited: The situation is quite different when
the supply of data exceeds our memory capacity. An embedded
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Fig. 6. Histogram-estimated density of sampled speech x (dotted lines) and its nonlinear transformation tanh(wx) with gains of w = 2.1 (dashed) and w = 4.5
(solid), plotted on a linear (a) resp. logarithmic (b) scale.

controller, for instance, may be required to process an infinite
stream of incoming samples with as little memory capacity as
possible. We can accommodate this constraint by recognizing
that with the exception of the reference point, there is no need to
ever reuse the same data sample. A memory-limited implemen-
tation can therefore simply pick a fresh reference point from the
data stream for each update, then collect the required statistics
over the next |T | samples. Memory is required only to store the
reference point and the three sums that are accumulated over
the batch.

3) Intermediate: In practice an implementation may well
fall somewhere between these two extremes. For instance, if the
supply of data is large but not cheap, the best strategy may be to
obtain a fresh batch of samples for each update, small enough
to be comfortably held in memory. All pairs of points in this
batch can then be used to compute the update, as in the data-
limited case. If online weight updates (i.e., after each sample)
are required, each new sample can be used as a reference point,
and statistics gathered over a sliding window of the |T | most
recent past samples [13].

This raises a valid question: what is an appropriate size for
|T | in general? How many points should our statistics be ac-
cumulated over before we perform an update and pick a new
reference point? It is well known that the error in empirical
statistics decreases with the square root of the size of the sam-
ple. That is, the longer we sample before making an update,
the more accurate that update will be. On the other hand, this
means that more computation has to be performed for each up-
date. Moreover, the noise associated with small sample sizes
can in fact be very effective in helping gradient descent escape
from local minima. In practice we have found small batch sizes
of 20 to 50 samples to provide the best performance. Where
highly accurate asymptotic results are required, the batch size
can be increased after initial stochastic convergence.

E. Online Variants
As described above, the estimation and manipulation of

Shannon entropy requires collecting the data into batches for
learning. There are, however, related objectives that can be im-
plemented as true online algorithms that adjust their weights in
response to each new data pattern as it becomes available, using
only minimal memory of past data:

1) Projection Pursuit and Renyi Entropy: Projection pur-
suit [15, 16] is concerned with finding linear, low-dimensional
projections of high-dimensional data that optimize a given in-
dex function. Our work here can be understood as projection
pursuit with Shannon entropy as index function, extended to
nonlinear systems. We can apply kernel density estimation to
other projection pursuit indices as well, such as

Q(Y ) = −
∫

p(y)2 dy ≈ − 1
|S|

∑
yi∈S

p̂(yi)

= − 1
|S||T |

∑
yi∈S

∑
yj∈T

K(yi − yj) , (31)

shown by Huber [16, p. 446] to be closely related to the original
projection pursuit index proposed by Friedman and Tukey [15].
Q(Y ) is in fact the quadratic Renyi [25] entropy, which belongs
to a class of generalized entropy measures [18] which when
extremized under given constraints produce the same result as
extremizing the Shannon entropy [17].

Assume again that Y is produced from X by the adaptive
mapping Nw, and differentiate Q(Y ) with respect to the pa-
rameters w:

∂

∂w
Q̂(Nw(X)) = (32)

1
|S||T |

∑
yi∈S

∑
yj∈T

K(yi−yj) (yi−yj)T Σ−1 ∂

∂w
(yi−yj)

This differs from (25) only in that the terms in the outer sum
over S are no longer normalized by the p̂(y) in the denominator
of (9). This has an important consequence in that it makes the
gradient amenable to true online implementation: w can now
be updated according to

∆w ∝ K(∆y) (∆y)T Σ−1 ∂

∂w
(∆y) (33)

where the ∆ operator denotes temporal finite differencing. The
simple form of (33) makes quadratic Renyi entropy attractive
for entropy manipulation purposes [14, 24, 37].

Viola [41, p. 65] notes that Ĥ overestimates the true Shannon
entropy while Q̂ underestimates it, and proposes combining the
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two to obtain an improved empirical estimate of Shannon en-
tropy. One way to do this — albeit at the cost of again requiring
batching of data — is to add a suitable constant to the denomi-
nator of (9), as used in (25).

2) Parametric Reference Distribution: A generic strategy to
obtain a true online algorithm is to replace p̂(y) in the denom-
inator of (9) by a parametric approximation q(y) that can be
evaluated without reference to a specific set of data points. The
online update rule then becomes

∆w ∝ K(∆y)
q(y)

(∆y)T Σ−1 ∂

∂w
(∆y) . (34)

Note that this optimizes the objective

Q(Y ) = −
∫

p(y) ln q(y) dy

= −
∫

p(y) ln p(y) dy +
∫

p(y) ln
p(y)
q(y)

dy

= H(Y ) + D(p||q) ≥ H(Y ) (35)

which differs from the entropy H(Y ) by the Kullback-Leibler
(KL) divergence between p and q, D(p||q). Since the KL-
divergence is always non-negative, Q(Y ) is an upper bound on
the entropy, which can be kept tight by continually adapting the
reference distribution q to the output Y = Nw(X) of our adap-
tive map. This can be achieved through online density tracking
methods such as Kalman filtering for a single Gaussian, online
EM [21, 35] for a mixture of Gaussians, or the self-organizing
maps of van Hulle [39, 40]. Note that quadratic Renyi entropy
manipulation (33) is in fact the special case of (34) with a uni-
form reference density.

IV. SUMMARY

The optimization of entropy in the output of an adaptive sys-
tem [29] requires access to the density function, which must
therefore be estimated empirically. This is commonly achieved
by resorting to parametric methods which impose strong mod-
eling assumptions upon the data. We have based our entropy
estimate on a non-parametric alternative, kernel density esti-
mation, instead, and provided corrections for problems that can
occur when the data sample is finite or quantized. Both gradient
ascent and expectation-maximization techniques for maximum
likelihood optimization of the shape of the regularizing kernel
have been developed, compared empirically, and generalized to
heteroscedastic kernels.

The resulting nonparametric density estimate is smooth and
differentiable, and can thus be used to manipulate Shannon en-
tropies at the output of a parametrized mapping, such as a neural
network, by gradient methods. We also provide a normalization
term that makes the entropy estimate invariant to affine trans-
formations. The gradient of either entropy estimate yields a
simple and efficient batch learning rule that operates on pairs
of input samples. We have given data-limited and memory-
limited implementations for this nonparametric entropy manip-
ulation method, related our approach to projection pursuit and
quadratic Renyi entropy, and described a generic way to obtain
a fully online implementation.
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